Biogenesis pathways of piRNAs loaded onto AGO3 in the Drosophila testis.
نویسندگان
چکیده
PIWI-interacting RNAs (piRNAs) silence transposable elements in animal germ cells. In Drosophila ovaries, piRNAs are produced by two distinct pathways: the "ping-pong" amplification cycle that operates in germ cells and a ping-pong-independent pathway termed the primary pathway that mainly operates in somatic cells. AGO3, one of three PIWI proteins in flies, is involved in the ping-pong cycle in ovaries. We characterized AGO3-associated piRNAs in fly testes and found that like in ovaries, AGO3 functions in the ping-pong cycle with Aubergine (Aub) for piRNA production from transposon transcripts. In contrast, most AGO3-associated piRNAs corresponding to Suppressor of Stellate [Su(Ste)] genes are antisense-oriented and bound to Aub. In addition, the vast majority of AGO3-bound piRNAs derived from the AT-chX locus on chromosome X are antisense-oriented and are also found among Aub-associated piRNAs. The presence of very few sense Su(Ste) and AT-chX piRNAs suggests that biogenesis of both Su(Ste) and AT-chX piRNAs by a ping-pong mechanism only is highly unlikely. Nevertheless, the mutual interdependence of AGO3 and Aub for the accumulation of these piRNAs shows that their production relies on both AGO3 and Aub. Analysis of piRNA pathway mutants revealed that although the requirements for piRNA factors for Su(Ste)- and AT-chX-piRNA levels mostly overlap and resemble those for the ping-pong mechanism in the ovaries, Armitage (armi) is not required for the accumulation of AT-chX-1 piRNA. These findings suggest that the impacts of armi mutants on the operation of the piRNA pathway are variable in germ cells of fly testes.
منابع مشابه
S01-04 piRNA biogenesis pathways in Drosophila germline cells
Gene silencing pathways triggered by small RNAs are generically called RNA silencing. Members of the Argonaute family play important roles in the pathways. In Drosophila, the Argoanute family consists of five distinct members (AGO1, AGO2, AGO3, Piwi, and Aubergine). Piwi, Aubergine, and AGO3 (the PIWI proteins) are specifically expressed in germlines and associated with Piwi-interacting RNAs (p...
متن کاملVreteno, a gonad-specific protein, is essential for germline development and primary piRNA biogenesis in Drosophila
In Drosophila, Piwi proteins associate with Piwi-interacting RNAs (piRNAs) and protect the germline genome by silencing mobile genetic elements. This defense system acts in germline and gonadal somatic tissue to preserve germline development. Genetic control for these silencing pathways varies greatly between tissues of the gonad. Here, we identified Vreteno (Vret), a novel gonad-specific prote...
متن کاملKrimper Enforces an Antisense Bias on piRNA Pools by Binding AGO3 in the Drosophila Germline.
Piwi-interacting RNAs (piRNAs) suppress transposon activity in animal germ cells. In the Drosophila ovary, primary Aubergine (Aub)-bound antisense piRNAs initiate the ping-pong cycle to produce secondary AGO3-bound sense piRNAs. This increases the number of secondary Aub-bound antisense piRNAs that can act to destroy transposon mRNAs. Here we show that Krimper (Krimp), a Tudor-domain protein, d...
متن کاملpiRNA Biogenesis and Transposon Silencing in Drosophila: A Dissertation
piRNAs guide PIWI proteins to silence transposons in animal germ cells. In Drosophila, the heterochromatic piRNA clusters transcribe piRNA precursors to be transported into nuage, a perinuclear structure for piRNA production and transposon silencing. At nuage, reciprocal cycles of piRNA-directed RNA cleavage—catalyzed by the PIWI proteins Aubergine (Aub) and Argonaute3 (Ago3) in Drosophila—dest...
متن کاملFunctional involvement of Tudor and dPRMT5 in the piRNA processing pathway in Drosophila germlines.
In Drosophila, the PIWI proteins, Aubergine (Aub), AGO3, and Piwi are expressed in germlines and function in silencing transposons by associating with PIWI-interacting RNAs (piRNAs). Recent studies show that PIWI proteins contain symmetric dimethyl-arginines (sDMAs) and that dPRMT5/Capsuleen/DART5 is the modifying enzyme. Here, we show that Tudor (Tud), one of Tud domain-containing proteins, as...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- RNA
دوره 16 12 شماره
صفحات -
تاریخ انتشار 2010